A circadian clock- and PIF4-mediated double coincidence mechanism is implicated in the thermosensitive photoperiodic control of plant architectures in Arabidopsis thaliana.
نویسندگان
چکیده
In Arabidopsis thaliana, the circadian clock regulates diurnal and photoperiodic plant growth including the elongation of hypocotyls in a time-of-day-specific and short-day (SD)-specific manner. The clock-controlled PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) encoding a basic helix-loop-helix (bHLH) transcription factor plays crucial roles in this regulation. PIF4 is transcribed precociously at the end of the night in SDs, under which conditions the protein product is stably accumulated, while PIF4 is expressed exclusively during the daytime in long days (LDs), under which conditions the protein product is degraded by light-activated phytochrome B. The dawn- and SD-specific elongation of hypocotyls is best explained by the coincident accumulation of the active PIF4 protein during the night-time before dawn specifically in SDs. However, this coincidence model was challenged with the recent finding that the elongation of hypocotyls is markedly promoted at high growth temperature (i.e. 28°C) even under LDs in a PIF4-dependent manner. Here, we reconciled these apparently conflicting facts by showing that the transcription of PIF4 occurs precociously at the end of the night-time at 28°C in LDs, similarly to in SDs. Both the events resulted in the same consequence, i.e. that a set of PIF4 target genes (ATHB2, GH3.5, IAA19, IAA29, BRox2, GAI, ACS8 and CKX5) was induced accordingly in a time-of-day-specific manner. Taken together, we propose an extended double coincidence mechanism, by which the two environmental cues (i.e. photoperiods and temperatures), both of which vary on a season to season basis, are integrated into the same clock- and PIF4-mediated output pathway and regulate a hormone signaling network to fit plant architectures properly to domestic habitats.
منابع مشابه
Phytochrome-interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana.
The plant circadian clock generates rhythms with a period close to 24 h, and it controls a wide variety of physiological and developmental events. Among clock-controlled developmental events, the best characterized is the photoperiodic control of flowering time, which is mediated through the CONSTANS (CO)-FLOWERING LOCUS T (FT) pathway in Arabidopsis thaliana. The clock also regulates the diurn...
متن کاملThe circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana.
The plant circadian clock generates rhythms with a period close to 24 h, and it controls a wide range of physiological and developmental oscillations in habitats under natural light/dark cycles. Among clock-controlled developmental events, the best characterized is the photoperiodic control of flowering time in Arabidopsis thaliana. Recently, it was also reported that the clock regulates a dail...
متن کاملTranscription of ST2A encoding a sulfotransferase family protein that is involved in jasmonic acid metabolism is controlled according to the circadian clock- and PIF4/PIF5-mediated external coincidence mechanism in Arabidopsis thaliana.
Plant elongation growth on a day-to-day basis is enhanced under specific photoperiod and temperature conditions. Circadian clock is involved in the temperature adaptive photoperiodic control of plant architecture, including hypocotyl elongation in Arabidopsis thaliana. In this regulation, phytochrome interacting transcriptional factors, PIF4 and PIF5, are activated at the end of night under sho...
متن کاملVerification at the protein level of the PIF4-mediated external coincidence model for the temperature-adaptive photoperiodic control of plant growth in Arabidopsis thaliana
Plant circadian clock controls a wide variety of physiological and developmental events, which include the short-days (SDs)-specific promotion of the elongation of hypocotyls during de-etiolation and also the elongation of petioles during vegetative growth. In A. thaliana, the PIF4 gene encoding a phytochrome-interacting basic helix-loop-helix (bHLH) transcription factor plays crucial roles in ...
متن کاملUbiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis.
Protein ubiquitination is involved in most cellular processes. In Arabidopsis (Arabidopsis thaliana), ubiquitin-mediated protein degradation regulates the stability of key components of the circadian clock feedback loops and the photoperiodic flowering pathway. Here, we identified two ubiquitin-specific proteases, UBP12 and UBP13, involved in circadian clock and photoperiodic flowering regulati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant & cell physiology
دوره 53 11 شماره
صفحات -
تاریخ انتشار 2012